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A FourietPChebyshev spectral simulation of tvvo-dimensional compressible convection is 
presented. The fluid is a perfect gas with constant dynamic viscosity and thermal conductivity. 
Both slippery and rigid boundary conditions for the velocity are used here. The temperature is 
maintained fixed at the upper and lower boundaries. An explicit Adams-Bashforth predictcr- 
corrector numerical scheme is used in order to overcome the Courant-Friedriechs-Levy con- 
dition. The nonlinear diffusion terms are handled by an iterative method. with finite differen- 
ces or spectral preconditioning. Steady state solutions have been obtained for both types 01 
boundary conditions. Critical exponents are found to be the same as in the incompressible 
case. at ieast for a weak value of the stratification parameter. ; IYBB ctcxdsm~c PIW inc 

1. INTRODUCTION 

In the past ten years spectral methods have brought extensive progress in the 
understanding of the transition to turbulence. Such insights have been possibie due 
to th.e high accuracy of the spectral methods. The main properties of these methods 
are well documented in Refs. [I-3]. Among these properties recall the absence of 
phase error. Moreover, the convergence is generally faster than algebraic in the 
mesh size. Both properties make these methods well suited to the study of the trans- 
ition to turbulence. A paradigm in this area is the incompressible thermal comet- 
tion problem, studied within the framework of the Boussinesq approximation Th!s 
approximation also holds for a compressible fluid provided that the vertical extent 
of the fluid is small enough. In some situations, for example, stellar convection or 
laser driven fusion, the stratification of the fluid can no longer be ignored. Another 
model is then used, namely, the anelastic approximation where the density varies in 
space and time but not on the acoustic time scale. Tn other words, this 
approximation consists in filtering out the high frequency acoustic waves. Several 
studies have been carried out within this approximation [I&6]> which requires that 
the fluid velocity is small compared to the local sound speed [7]. I! this 
requirement is not satisfied we have to use the full Navier-Stokes equations. Such a 
program was first carried out by Graham [S]. Later, Chan, Sofia. and Wolf? [Sj. 
using a finite differences code and an eddy viscosity for modelling the small scales of 
the turbulence, exhibited the breaking of the rolls at high Rayleigh numbers. This 
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justified an early assumption taken in the mixing length theory of stellar convection. 
More recently, Hurlburt, Toomre, and Massaguer [lo], using an improved version 
of the Graham’s code, showed that there is no tendency to form multiple rolls, at 
least for this range of Rayleigh numbers but they did exhibit time-dependent 
solutions for high Rayleigh numbers. However, the subgrid-scale model used in Ref. 
[9] could explain the disagreement between both results. 

In this paper, we present a spectral collocation method for two-dimensional com- 
pressible convection. A Fourier expansion has been used in the horizontal direction. 
In the inhomogeneous direction we use an expansion on the Chebyshev 
polynomials because of their high rate of convergence and their ability to handle 
sophisticated boundary conditions. 

When using Chebyshev polynomials in compressible flows, we are faced with two 
very severe restrictions on the time step, both of which come from the high 
resolution on the boundaries. The first one is the Courant-FriedriechssLewy con- 
dition (CFL) which is worse in compressible flows due to the high frequency 
acoustic waves. The second one is the stability condition for the diffusion terms. 
Both difficulties have to be solved by an implicit or semi-implicit scheme. However, 
in compressible flows, viscous and thermal diffusion terms are nonlinear. This non- 
linearity leads to the use of iterative methods such as suggested by Orszag [ 111. 

We describe the physical problem in the Section 2. Section 3 is devoted to the 
numerical method used to solve the equations. In Section 4 we present preliminary 
results about steady states close to the threshold where critical exponents are com- 
puted. 

2. THE PHYSICAL PROBLEM AND THE EQUATIONS OF THE MODEL 

The motion takes place in a two-dimensional rectangular cavity of width L, and 
height d The r-axis is directed downward so that the gravity, represented by the 
vector g= (0, 0, g), is positive along this direction. 

The equations of motion for a compressible, viscous, thermally conducting gas 
are as follows: 

splat + ap t4,jady, = 0, 

ap u,lat+a.p uiluilaxi= -aP~axi+azy~axi+gip, 
(2.1) 

(2.2) 

and 

ap E/at+ atpE+ P) u~i~ax,=a~,ui~axi+a~axi K aT/axi, (2.3) 

where E is the total energy 

E=+(u:+u:)+e-gx,, (2.4 j 
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and r,, is the viscous stress tensor given by 

‘13 

to = p(&4i/dx; + &l,/&Yi - g,; 3u,p.Yu!)7 (2.5) 

where i, j, I= 1, 2. The Stokes’ relation has been used betw~een the first and the 
second viscosities. The coordinates si and X, stand for the .Y and : coordinates, 
respectively. 

This set of equations is closed by the equation of state for the perfect gas. 

P= R,pT and e= C,.T. (‘.5:0 

P. p, T, and e are pressure, density, temperature, and internal energy, respee- 
tively; the lli are the components of the velocity. The thermal conductivity and the 
dynamic viscosity are taken as constants. R, is the gas constant and C,. the specific 
heat at constant volume. 

The boundary conditions have to be chosen according to the physical problem. 
In Hydrodynamics one usually deals with viscous fluids confined between two rigid 
plates One naturally chooses rigid boundary conditions where the velocity vanishes 
on the walls. On the other hand, in astrophysics one is concerned with stellar ccn- 
vection zones. thus it is reasonable to use slippery boundary conditions where the 
horizontal gradient of the velocity vanishes [12]. The boundary conditions for the 
temperature are given by fixed temperatures at the bottom and the top of the layer. 
Equally we can just give the heat flux at one of these boundaries. In this paper, we 
will be dealing both with rigid and slippery boundary conditions for the velocity 
and the prescribed temperatures at the upper and lower bounds of the layer. Then, 
the boundary conditions read 

11, = 0 at I = zO, :C + ci (2.6) 

zli=O or ~31,~?:=0 at 3=;0,:0+~7 i3.71 

T(r,) = To and T(:,,+d)= T,. IX) 

Periodic boundary conditions are used in the horizontal direction for al! 
variables. 

The static state is obtained by setting c7/?t = 0 and 2:; = 0 in Eqs. ( ?.I)-(2.3). Ti-Gs 
solution is a polytrope written as in Ref. [ 121, 

T(r)=rZ, (2., G 

/g(z) = y1.p. (2.13 

ptr, = yrt lyt I* (?.li 

The coordinate -’ goes from ZpL to Z-‘-t 1, where Z=d/;,. The index of t5e 
polytrope is 

m = g/R, flo - 1, where /I0 = T(r, + ii) - T(r,). (2.121 

In Eqs. (2.9~(2.11) and henceforth, we will be using the following units: li, 
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c!~E~~(:,),‘F, p(r,), and T(z,) for length, time, density, and temperature, respectively. 
The two-dimensional compressible convection problem is characterized by six 
dimensionless parameters which are the aspect ratio A, the Prandtl number r~, the 
ratio of specific heats 7, the normalized layer thickness Z, the polytropic index rn, 
and the Rayleigh number R. The parameters D and y are given by the 
thermodynamical properties of the fluid. Z characterizes the stratification of the 
configuration while the Rayleigh number measures the degree of the instability. 
Their expressions are 

A=LJd, u = C,glK, Z=d,‘z,, :‘= c,/c,., 

and 

R= WTJ ffCi& - T,,)ld-glC,l:(Klp,,C,)i~ip,,), (2.131 

where the subscripts I and u refer to the lower and upper layer boundaries. The 
definition of ail parameters follows the Refs [S-lo, 121. 

Now the set of Equations (2.1)-(2.3) can be rewritten as 

Sp’,m + i?p u;/Qx, = 0, (2.14) 

dp q/at + ilp uiujl~xj = -Sd( P +p)/Sxj + drii/Sxj + Gp’, (2.15) 

and 

ap Ept+ acpE+ YP) uilasj= + ssiiuijaxj 
+ s/(7- 1) ~1~ a20/axi bi, (2.16) 

where p’, 0, and p are the density, temperature, and pressure fluctuations. S and G 
are auxiliary constants defined by 

S=R/[o(m+ l)‘Z’(l/(nz+ l)-(l)- l)h] and G=ZSjnl+ 1). (2.17) 

Four different time scales are present in this model of thermal compressible 
convection. Two of them are given by the first and the second viscosity. In 
dimensionless variables they read 

r!&ous - pi=), p. \1SCO”S y 3Pk). (2.18 

The time scale of the diffusion is given by 

t thermal - a,‘l’P(z)> (2.19 

where the density goes from z”’ to (Z + 1)“. The compressibility of the model leads 
to high frequency acoustic waves for which the time scale is given by 

t acoustic - l/(yGT(~))i,‘~, (2.20) 

where the mean temperature varies from Z to Z+ 1. 
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This time scale is generally smaller than the viscous time scales by two or three 
orders of magnitude, but according to Eq. (2.19), the thermal time scale may be of 
the same order of magnitude, or much smaller than the acoustic time scale. Follow- 
ing this remark, a large number of time steps will be needed to obtain solutions due 
to the necessity of resolving the smallest time scaie. This has to be taken in;3 
account when building a numerical scheme, in order to lead to a reasonabie com- 
putation time. Finally. we recall that the sound velocity is cf = (?P/?;;), = 
)qSq.:Sp)., or in our system of units c: = yS(aP;iJp )T, where S is given by (3.17 ). 

3. THE COMPUTATIONAL TECHNIC&E 

All variables are expanded in a FourierChebyshev basis as 

where T,,, is the Chebyshev polynomial of degree m and L, is the horizontai 
periodicity. 

We use a collocation method where spatial derivatives are computed in th2 
spectral space and nonlinear products are performed in the physical space on the 
grid points 

xi = iI., ,:M, i=Q, 1, . ..) N- ! (3.2) 

y=z-‘+ 1:!2[1 +COS(7T(‘~4-,j,~n~], j = 0. 1, . . . . hf. (3.3) 

The evolution in time is carried out in the physical space by means of a finite 
differences technique. 

The incompressible case is generally handled by the classic Adams-Bashforth 
CrankkNicholson (ABCN) time stepping scheme [ 13-151, despite its low order in 
time, typically of order At. As already stated. in compressible flows, the time step 
required for the convective stability. via the CFL condition is much smaher than 
that required for accurate resolution. This suggests that one may try to overcome 
this constraint by an appropriate algorithm. But a full implicit scheme would be too 
cumbersome, so, we have chosen a predictor-corrector technique. Our ambition, 
although beyond this paper, is to simulate the transition to turbulence, which 
requires high time resolution [l]. Thus we are aware that we probably would have 
to use the Richardson extrapolation method as in [ 161, to obtain a higher order 
approximation. Convection and pressure terms are treated by a second-order 
Adams-Bashforth predictor and a third-order Adams-Bashforth corrector [ 171. 
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Such a combination is stable for a time step of the order of the CFL condition 
[lg]. This scheme reads 

(p* - p”)/dt = - l/2( 3 +” u:‘/&- Sp”- ‘247 ‘/dxi) 
(3.4) 

(P fi+l-p’f)//jt= -l/12(-@“-’ u:‘-“&- )f t j + 8 dp” u;,‘/a.u, + 5 ap* u*/ax;) 

(L47 -u::‘)/dt= - 1/2(3C:‘-q-7 
(3.5) 

(qf L - q)/dt= -ljl2(-C;+SC;‘-‘+5C*) 

+ (1 + Sj,/3) l/,1 Pu: + ‘/S.Yf 

with 

ci = - l$ aui/Fxj - l/p s CYppiaxi + (1 + 6,/3) ljp allJ8x: 

+ 1/3p 8’(u,6, + ~~6~,)/d~i iixz + Gp1/p6jz 

(a* -&r)/dt= - 1,‘2(3D’i-DD:‘-‘) 

(aH + l -t”“)/At= -l/12(-D”+8D”-‘+5D*) 

+ S/( y - 1) I’/0 8’0” + ‘/8X; 

(3.6) 

with D = 6’(8 + SP) u,/&u, + S/(JJ - 1) y/a d’O/&‘x: and d = pE. 
The splitting of the diffusive part into an explicit contribution and an implicit one 

in the .x2 direction is allowed by the large ratio of the mesh spaces in x, and x1 
directions. 

The nonlinear diffusion terms have to be handled by an iterative method in order 
to overcome the very severe restriction on the time step which occurs in a explicit 
treatment. 

3.2. The Spectral Iterative Method with Finite Differewes or Spectral Precondition- 
ing 

Spectral Chebyshev approximations of such nonconstant or nonlinear operators 
lead to full, ill-conditioned, and asymmetric matrices. Direct application of implicit 
or/and iterative methods would require prohibitive computational resources. In 
order to overcome this difficulty, the use of iterative methods and preconditioning 
techniques within the framework of pseudo-spectral approximations has been 
suggested [ 111. Since then, a number of iterative methods, with finite differences or 
finite elements preconditioning, have been suggested and tested on elliptic equations 
[ 19-231. Among them, the minimal residual Richardson (MRR) method is the 
most useful and one of the most efficient, at least for simple boundary conditions 
like Dirichlet boundary conditions. Let us recall that the Richardson iterative 
method is the following. Let 

L*u=f, (3.8) 
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be the equation to be solved, where L is the elliptic operator which comes out from 
the diffusion terms of the Eqs. (2.15)-(2.16), and ,f the right-hand side of Eqs. (3.5 1. 
(3.6). The iterative method is written as 

u In+II=u(ll)-~L-.l(L L1ln, “,’ ‘,” -.f’L i 3.9 ) 

where L, is the Chebyshev approximation of the operator L, L,, is the precon- 
ditioning operator, and il is a parameter adjusted in order to maximize the rate of 
convergence. PI better strategy has been proposed in Refs. Cl%211, by redefining 
this parameter at each iteration in order to minimize the residue. Such a method is 
called the minimal residual Richardson method (MRR). One possible formuiation 
of the MRR is the following. Let 11’ be the initial guess; the initial residue is com- 
puted by 

Y0 = f - L, lfO. Y0 = L$ r” (3.10) 

and the iterative process is written as 

L4 (k+ 1 t = L4(kb + &k, where zk = (rk, L,,rk)/(L,,?, L,z”) 

,.(k+ 1) = rtkl _ a”L zx- 5p : 
~(k+ll=L-lrlk tll. 

w 

(3.11 

(3.12 

(3,13 

? 

) 

The previous stage, given by formulas (3.5))(3.6) provides the intermediate value 
u**, and we have now to solve the equation 

where 

L,L4 ‘I+ l = 2[p(z) + p’(s, z> r,] LP”(.Y, z, [):‘A?, (3.14) 

L, = 2[p(z) + p’(x, z. t)],:dr - d’/w. i3.15) 

The preconditioning operator L, must be a very close approximation of the 
operator L,. It is generally the tridiagonal finite differences approximation of the 
operator L, obtained by taking the nonuniform mesh into account. We have 
numerically computed the spectrum of the operator L;;‘L,, for the operator (3.15 ) 
with finite differences preconditioning. Results are given in Table I, for Dirichlet 

TABLE I 

Spectrum of the Operator L,‘L,, For Dirichlet Boundary Conditions. 
where At Is the CFL Time Step 

M z 2.At Spectrum 

17 1 1.1!?+3 [1, LZS] 
33 1 4.x + 3 [l, 1.551 
65 1 1.7E+5 [l. 1.781 

581’72:1-15 
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FIG. 1. Preconditioned residuals. Convergence history of the MRR with finite differences precon- 
ditioning for the operator defined in Eq. (3.11~. The spatial resolutions are hl= 16. 32, and 64 
Chebyshev polynomials. The residue is given by Eq. (3.15) and it has been computed after the stage 
(3.12j. Dirichlet boundary conditions have been used. 

boundary conditions. The mean density varies from 1 to 2 and typical density 
fluctuations are given in Tables IV and V. For vanishing At-', we check that the 
spectrum becomes closer to the analytical value [ 1, 7-r2/4] of the operator L$'L, 
for L= -P/S; [20]. 

In Fig. 1 we have displayed the history of the relative residue which is defined by 

Residue’ = Max( (r, r)/( J f )), (3.16) 

where f is the right-hand side of Eq. (3.14) and I’ is the residue given by (3.8). It 
appears that the behavior is roughly independent of the resolution M. The rate of 
convergence is dramatic at the beginning and decreases by almost one order of 
magnitude per iteration afterwards. 

On the other hand, it has been pointed out [24], that on a vectorial computer, a 

TABLE II 

Spectrum of the Operator f.h,‘L,, for Dirichlet Boundary Conditions, 
where Jt Is the CFL Time Step 

Z Z/Al Spectrum 

17 1 1.4Ef4 10.964, 1.042] 
33 1 5.6Ef4 ro.974, 1.051-J 
65 1 2.3Et5 CO.963, 1.0651 
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TABLE III 

Spectrum of the Operator LG’L,, for Neumann Boundary Con- 
ditions. where dt Is the CFL Time Step 

Z 2’At Spectrum 

17 1 1.9Ef4 10.963. 1.042] 
33 1 73E+3 p.973, 1.05!] 
65 1 3.OE+ 5 10.963, 1.0651 

matrix multiplication can be faster, in terms of CPU time, than the inversion of a 
triadiagonal linear system executed in scalar mode. This suggestion leads to the 
following preconditioning 

L, = 2p(r)/Jr - <3’..‘&‘. (3.19) 

The Chebyshev approximation of the operator L, is a full matrix, but it does not 
depend on time and so, it needs to be inverted only once. It will be a close 
approximation to L, provided the relative density fluctuations are not too high. 
These behave as the square of the Mach number and Eq. (3.17) wiil be valid for low 
Mach number situations. The spectrum of the operator LGIL, has been displayed 
in Tables II and III for the same mildly nonlinear solutions used in Table I. for 
different resolutions and boundary conditions. 

10-I’ 
Ki” 
10-15 
.#l-16 .1 

1 2 3 4 5 b 7 I 5 10 11 

ITERATION 

FIG. 2. Preconditioned residuals. Convergence history of the MRR with spectral preconditioning for 
the operator detined by Eq. (3.16). The spatial resolutions are :M= 16. 32. and 61 Chebyshev 
polynomials. Dirichlet boundary conditions have been used. 
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FIG. 3. Preconditioned residuals. Convergence history of the MRR with spectral preconditioning for 
the operator defined by Eq. (3.16). The spatial resolutions are M= 16, 31, and 64 Chebyshev 
polynomials. Neumann boundary conditions have been used. 

These spectra are very close to unity and thus will lead to a high rate of con- 
vergence. The evolution of the residues with spectral preconditioning are presented 
in Fig. 2 and 3 for Dirichlet and Neumann boundary conditions. The efficiency 
increases with the resolution, especially between M= 16 and M= 32. However, we 
did notice that the convergence is slower with the Neumann boundary conditions. 
This point has been observed by several authors [24]. The spectral preconditioning 
defined by Eq. (3.17) is clearly more efficient than the finite differences precon- 
ditioning when compared in terms of the number of iterations needed to reach the 
spectral accuracy. Moreover, it takes less CPU time. In both cases boundary 
conditions are satisfied exactly. 

4. PRELIMINARY RESULTS 

4.1. Validation of the Code 

The temporal numerical scheme and the weakness of the numerical diffusion of 
the code has been checked by computing the evolution of small disturbances very 
close to the threshold of the onset of convection. This critical Rayleigh number is 
known from the linear analysis around the conductive state [25]. Disturbances of 
the order of lo-” at 0.97 Rcrit (resp. 1.03 Rcrit) decay (resp. grow). In other words, 
the integration of the full nonlinear equations confirms the result of the linear 
theory and shows that, if some numerical diffusion is present, it does not perturb 
the transition to steady convection. 
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On the other hand, it is well known that, when an explicit scheme is used to soive 
an hyperbolic equation, the CFL stability condition is of the form 

where d: is the minimum mesh size, which occurs on the top and bottom boun- 
daries in the vertical direction and C,, is the local sound speed. C is a constant equal 
to 1.4 for the second-order AdamssBashforth predictor and third-order Adams--- 
Bashforth corrector numerical scheme. We have checked that our code obeys this 
restriction, at Ieast for mildly nonlinear solutions. 

4.2. ResuEts 

In this preliminary study, we limited ourselves to steady state solutions. 
Results, for the Neumann boundary conditions for the velocity and for a weak 

stratification parameter, have been displayed on Table IV, where R is the Rayleigh 
number, and Rcril = 483.33. I’,,, is the maximum of the velocity 

over the two-dimensional domain. The same delinition has been used for the ash 
number. prnnS is the maximum of the relative density fluctuations over the two= 
dimensional domain, defined by 

P Illax = Max(p(.y. ~);‘p(:)). (4.3 I 

The same definition holds for T,,, and P,,,. Using values of Table IV we check. as 
expected, that prnnX grows linearly as the square of the Mach number for Mach 
numbers smaller than 0.20. 

The Nusselt number, which measures the efficiency of the convection has been 
computed by the following formula [S]: 

Nu= (F,-F<,)/(F, -F,). (4.3 j 

TABLE IV 

Rayleigh Number 

1933.32 1150. 1000. 500. 650. 570.33 551 531.67 

Rt,&,t 4 3 2.01 1.65 1.34 1.18 1.14 1.10 
f’ ma, 29.900 22.603 15.112 11.181 1.656 5.479 4.835 4.177 

Mach max. 0.221 0.203 0.175 0.153 0.122 0.09-i 0.084 0.073 
Nu.bottom 2.804 2.455 1.997 1.708 I .42s 1.245 1.143 Z.195 

Pmsx 0.076 0.075 0.068 0.059 0.046 0.035 0.03 1 0.017 
T mnx 0.086 0.075 0.063 0.052 0.041 - 0.033 -0.030 - 0.025 
PlTUX 0.073 0.062 0.050 0.039 0.028 0.020 0.017 0.014 
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This number is exactly zero in the conductive state and coincides with the classic 
definition in Boussinesq theory for vanishing values of the stratification of the 
parameter Z [8]. F, and Fc are respectively the flux of the adiabatic gradient and 
the conductive flux. In natural variables they are 

F, = gK/C,, Fc = K( T, - T,, J/d. 

The total flux is given by 

F,= K(Z+ (%I/&>), 

(4.4) 

(4.5) 

where ( ) denotes the average value in a horizontal direction. In dimensionless 
variables the Nusselt number is written as 

Nu=1+(2O/iiz)/{Z(nz+1)(1/(172+1)-((j4)/3’)~, (4.6) 

Fig. 4. Steady state solution for the Neumann boundary conditions for the velocity: (a) vector field, 
(b) vorticity, (c) relative density, (d) temperature, and (e) pressure fluctuations contours are, respec- 
tively, displayed. The Rayleigh number R = 1000 (R = 2.07 R,,,). The stratification parameter Z = 1, the 
Prandtl number (r = 0.71, the aspect ratio A = 2.79, the polytropic index m = 1 and the ratio of specific 
heats 1’ = 1.67. Solid (broken j contours represent positive (negative) perturbations. More points have 
been used for the plot than for the simulation. Real values of the vorticity have been used. In Figs. 4c, d. 
and e, isovalues are scaled by a factor 10,000. The compressibility leads to a shift of the center of the 
rolls below and on the right (left) of the geometric center of the cell. 



COMPUTATION OF COMPRESSIBLE CONVECTION 229 

where 

and clji are the spectral coefficients of the temperature fluctuations. T, is the 
Chebyshev polynomial of degree j. Because solutions are stationary, heat fluxes and 
then Nusselt numbers have to be equal at the top and the bottom of the layers. This 
provides a stopping criterion for the integration process which has been stopped 
when 

is satisfied. 

C 

__............_ 
. .._.______.. -.-- ..__.____. 
_._____....... ..____ . _, . . . . _ 

d 

FIGURE 4 (continued) 
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The spatial resolution was 16 x 17 modes and we have checked that the highest 
coefficients of the expansion (3.1) were several orders of magnitude lower that the 
first ones. 

In Figs. 4, we present the isovalues of the vorticity, the relative density, the tem- 
perature, and the pressure fluctuations for a steady state with Neumann boundary 
conditions for the velocity. Since the value of the stratification parameter is Z= 1, 
the ratios of the density, temperature, and pressure between the top and the bottom 
are 2, 2, and 4, respectively, the polytropic index being equal to 1. Recall that the 
only nonzero component of the vorticity ~1 is given by 

o&,(x, z, t) = ilu2(x, z, tyax - irzl~(X, z, f)/i7Z. (4.8) 

As it is now well known, rolls of convection are deformed by the compressibility 
[S, 8, lo]. The strongest density fluctuations occur in the lower part of the central 
downward plume where the temperature fluctuations are lowest. As it is detailed 

b 

FIG. 5. Steady state solution for the Dirichlet boundary conditions for the velocity: (a) vector field, 
fb) vorticity, (c) relative density, (d) temperature, and (e) pressure fluctuations contours are respectively 
displayed. The Rayleigh number R = 2000. The stratification parameter Z= 2, the Prandtl number 
(r = 0.71, the aspect ratio A = 2.79, the polytropic index m = 1, and the ratio of specific heats y = 1.67. 
Rolls of the quarter of the spatial period and boundary layer appear on these patterns. 
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TABLE ‘4 

Rayieigh 
number 1 ‘ml Mach max. Nu. bottom Pm, Tmn, . “13, P 

2000 8.775 0.115 1.555 0.060 0.063 0.05Y 

in Ref. [26], the pressure is responsible for the change in direction of the fIow 
Consequently, the largest pressure fluctuations must arise where the flow diverges 

In Figs. 5 and in Table V. we have displayed an example of a solution wirh 
Dirichlet boundary conditions for the velocity. The value of the stratification 
parameter Z is now equal to 2, and the ratios of the density temperature, and 
pressure between the top and the bottom are 3, 3. and 9, respectively, with the 
polytropic index still equal to unity. The solution for this type of boundary car- 

FIGURE 5 (continued) 
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ditions is formed by four rolls. The periodicity is now half the aspect ratio. Spatial 
patterns of Figs. 5 exhibit clearly the boundary layer of the flow on the top and 
bottom boundaries. 

4.3. Variation qf the Nusselt Number md the Maxinyn Velocity as Functions qf the 
RaJyleiglz Number 

As in static critical phenomena, it is possible to compute critical exponents close 
to the transition. The interest of such coefficients results from the observation that 
the values of the critical exponents are rather insentive to the details of the system. 
In other words, such coefficients are, at least for a class of systems, universal [27]. 

In the incompressible case, the critical exponent of the Nussel number and the 
maximum velocity are known both from experiments and numerical simulations. 
From Ref. [28], we can write 

(Nu - 1) R v (R - Rcrit)a (4.9) 

~max - iR - Rcrir JB (4.10) 

with CI = 1 and j? = 4, for the incompressible case. These relations hold very close to 
the transition for Rayleigh numbers such that 

(R - &it )lRcrit < E*. (4.11) 

Following Ref. [ZS], E* 5 6. 
We have plotted relations (4.9)-(4.10) in Figs. 6 and 7 with the straight line of 
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FIG. 6. Variation of Ln(Nu - 1) R with Ln(R,,, - Rj; Neumann boundary conditions for the 
velocity. The stratification parameter is equal to 1: (0) numerical value; - straight line of slope 1. 
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FIG. 7. Variation of Ln I.,,, with Ln(R,,,,- R): Same conditions as in Fig. 6: ~ straight Line of 

s!ope f. 

slopes 1 and $. It appears that these power laws hold for the weakly compressible 
case, for E* ~0.35. We have computed the slope of both straight lines by the least 
squares method, using the first three or four points. The results are 

:! = 1.027 p = 0.481 for three points, 
(4.12) 

3L = 1.047 fl= 0.501 for four points, 

which are reasonable approximations of the values 3 = I and ,B = $. We guess that 
these critical exponents hold for any value of the stratification parameter Z with the 
restriction that the larger the Z parameter, the smaller the range of z*. 
Measurements of the critical exponents and steady state solutions displayed exhibn 
the classic symmetry with respect to the middle of the cell. It confirms the accuracy 
of the temporal numerical scheme of the pseudo-spectral code, since any spatial 
resolution or any truncated model of convection yields the good critical exponents 
WI. 

5. CONCLUSION 

We have developed a numerical algorithm for the solution of two-dimensionai 
fully compressible thermal convection. The fluid is a perfect gas with constant 
dynamic viscosity and thermal conductivity. The algorithm uses finite differences in 
time and spatial truncated series of Fourier functions in the horizontal direction 
and Chebyshev polynomials in the inhomogeneous direction. Convective and 
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pressure terms are handled by a second-order AdamssBashforth predictor and a 
third-order Adams-Bashforth corrector. Nonlinear diffusion terms are treated by an 
efficient iterative method with spectral preconditioning. Both Neumann and 
Dirichlet boundary conditions for the velocity have been developed. The critical 
exponents defined near the transition have been found to be the same as in the 
incompressible case, but hold for a smaller range. This shows, as in Ref. [29], that 
spectral methods which have been used successfully in incompressible fluids can be 
extended to the full Navier-Stokes equations. However, the high frequency acoustic 
waves impose a very severe restriction on the time step. Time-dependent solutions 
have also been found and will be analyzed in a forthcoming paper. 
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